

 UNIT –I
INTRODUCTION, DISJOINT SETS

1 a) What do you mean by algorithm? List some of the properties of it. [L1][CO1] [04M]

• An algorithm can be defined as a finite set of steps, which has to be followed
while carrying out a particular problem. It is nothing but a process of
executing actions step by step.

 Characteristics of Algorithms:

o Input: It should externally supply zero or more quantities.

o Output: It results in at least one quantity.

o Definiteness: Each instruction should be clear and ambiguous.

o Finiteness: An algorithm should terminate after executing a finite number of

steps.

o Effectiveness: Every instruction should be fundamental to be carried out, in

principle, by a person using only pen and paper.

o Feasible: It must be feasible enough to produce each instruction.

o Flexibility: It must be flexible enough to carry out desired changes with no

efforts.

o Efficient: The term efficiency is measured in terms of time and space required

by an algorithm to implement. Thus, an algorithm must ensure that it takes

little time and less memory space meeting the acceptable limit of development

time.

o Independent: An algorithm must be language independent, which means that

it should mainly focus on the input and the procedure required to derive the

output instead of depending upon the language.

b) Classify the rules of Pseudo code for Expressing Algorithms. [L2][CO1] [08M]

SIDDARTH INSTITUTE OF ENGINEERING &TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Design and Analysis of Algorithms (20CS0523)

Course & Branch: B. Tech– CCC

Year & Sem: II B. Tech & II- Sem Regulation: R20

2 Simplify steps involved in performance analysis with example. [L2][CO1] [12M]

3

a) Explain space complexity and time complexity in detail with example. [L2][CO1] [08M]

b) Illustrate an algorithm for Finding sum of natural number [L2][CO1] [04M]

4
What is asymptotic notation? Explain different types of notations with examples. [L2][CO1] [12M]

• Asymptotic notations are used to write fastest and slowest possible running

time for an algorithm. These are also referred to as 'best case' and 'worst case'

scenarios respectively.

• "In asymptotic notations, we derive the complexity concerning the size of the

input. (Example in terms of n)"

• "These notations are important because without expanding the cost of

running the algorithm, we can estimate the complexity of the algorithms."

Why is Asymptotic Notation Important?

1. They give simple characteristics of an algorithm's efficiency.

2. They allow the comparisons of the performances of various algorithms.

Asymptotic Notations:

• Asymptotic Notation is a way of comparing function that ignores constant

factors and small input sizes. Three notations are used to calculate the running

time complexity of an algorithm:

1. Big-oh notation: Big-oh is the formal method of expressing the upper bound of

an algorithm's running time. It is the measure of the longest amount of time. The

function f (n) = O (g (n)) [read as "f of n is big-oh of g of n"] if and only if exist

positive constant c and such that

f (n) ⩽ k.g (n)f(n)⩽k.g(n) for n>n0n>n0 in all case

Hence, function g (n) is an upper bound for function f (n), as g (n) grows faster

than f (n)

For Example:

1. 3n+2=O(n) as 3n+2≤4n for all n≥2

2. 3n+3=O(n) as 3n+3≤4n for all n≥3

Hence, the complexity of f(n) can be represented as O (g (n))

2. Omega () Notation: The function f (n) = Ω (g (n)) [read as "f of n is omega of g

of n"] if and only if there exists positive constant c and n0 such that

F (n) ≥ k* g (n) for all n, n≥ n0

For Example:

 f (n) =8n2+2n-3≥8n2-3

 =7n2+(n2-3)≥7n2 (g(n))

Thus, k1=7

Hence, the complexity of f (n) can be represented as Ω (g (n))

3. Theta (θ): The function f (n) = θ (g (n)) [read as "f is the theta of g of n"] if and

only if there exists positive constant k1, k2 and k0 such that

 k1 * g (n) ≤ f(n)≤ k2 g(n)for all n, n≥ n0

For Example:

3n+2= θ (n) as 3n+2≥3n and 3n+2≤ 4n, for n

 k1=3,k2=4, and n0=2

Hence, the complexity of f (n) can be represented as θ (g(n)).

The Theta Notation is more precise than both the big-oh and Omega notation. The

function f (n) = θ (g (n)) if g(n) is both an upper and lower bound.

5 Discuss briefly with suitable example about Big ‘O’ notation and Theta notation [L3][CO1] [12M]

6

a) Solve the given function If f(n)= 5n2+ 6n+ 4 then prove that f(n) is 0(n2). [L3][CO1] [04M]

b) Explain two types of recurrences in detail with suitable example. [L2][CO1] [08M]

7
a) Apply the Master’s theorem to Solve the following Recurrence relations

i) T(n) = 4T(n/2) + n ii) T(n) = 2T(n/2) + n1og n

[L3][CO1] [06M]

b) What is iterative substitution method? Apply the Iterative substitution

method to Solve the following Recurrence relations.

 T(n) = 2T(n/2) + n

[L3][CO1] [06M]

9

8

Demonstrate Towers of Hanoi with algorithm and example. [L3][CO1] [12M]

9
a) Define disjoint set. Explain any four types of disjoint sets operations with

Examples.

[L2][CO1] [06M]

b) Explain the weighted union algorithm for union algorithm with example. [L2][CO1] [06M]

10 a) Explain the collapsing rule for Find algorithm with example. [L2][CO1] [06M]

 b) Determine steps of Union and Find algorithms with example. [L5][CO1] [06M]

R20 Course Code: 20CS0523

UNIT –II

BASIC TRAVERSAL AND SEARCH TECHNIQUES, DIVIDE AND CONQUER

1 Explain techniques of binary trees with suitable example.

[L2][CO2] [12M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

2 Elaborate BFS algorithm and trace out minimum path for BFS for the following

example.

[L6][CO2] [12M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

3
Explain DFS algorithm and trace out minimum path for DFS for the following

example.

[L5][CO2] [12M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

4 What is connected component and spanning tree? Draw the spanning tree for the

following graph using DFS algorithm

[L2][CO2] [12M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

5 a) Compare between BFS and DFS techniques.

[L4][CO2] [04M]

R20 Course Code: 20CS0523

5

b

b)

What is divide and conquer strategy? Write briefly about general method and

its algorithm

[L3][CO2] [08M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

6 What is divide and conquer strategy? Explain the working strategy of Binary Search

and find element 60 from the below set by using the above technique: {10, 20, 30, 40,

50, 60, and 70}. Analyze time complexity for binary search.

[L2][CO2] [12M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

7 Summarize an algorithm for quick sort. Provide a complete analysis of quick sort for

given set of numbers 12, 33, 23, 43, 44, 55, 64, 77and 76.

[L2][CO2] [12M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

8 Analyze the working strategy of merge sort and illustrate the process of merge sort

algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13.

[L4][CO2] [12M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

9 a)

Sort the records with the following index values in the ascending order using

quick sort algorithm. 9, 7, 5, 11, 12, 2, 14, 3, 10, 6.

[L2][CO2] [6M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

9 b

)

b)

Analyze the time complexity of merge sort using recurrence relation

[L2][CO2] [6M]

R20 Course Code: 20CS0523

10 Explain the Strassen’s algorithm for matrix multiplication and analyze time

complexity.

[L5][CO2] [12M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

 UNIT –III
 GREEDY METHOD, DYNAMIC PROGRAMMING

1 Explain in detail about general method of greedy method with algorithm and list

the few applications of greedy method.

[L2][CO3] [12M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

2 Elaborate job sequencing with deadlines by using greedy method where given the

jobs, their deadlines and associated profits as shown below. Calculate maximum

earned profit.

Jobs J1 J2 J3 J4 J5 J6

Deadlines 5 3 3 2 4 2

Profits 200 180 190 300 120 100

[L6][CO3] [12M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

3
Construct an optimal solution for Knapsack problem, where n=7,M=15 and

(p1,p2,p3,p4,p5,p6,p7) = (10,5,15,7,6,18,3) and (w1,w2,w3,w4,w5,w6,w7) =

(2,3,5,7,1,4,1) by using Greedy strategy.

[L3][CO3] [12M]

R20 Course Code: 20CS0523

4 a) Simplify the algorithm for Knapsack problem and analyze time complexity.

[L4][CO3] [6M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

 b) What is minimum cost spanning tree and write the algorithm of pseudo code

for kruskals algorithm

[L3][CO3] [6M]

R20 Course Code: 20CS0523

5 Apply the minimum spanning tree of the following graph using Kruskals

algorithm and prims algorithm.

[L3][CO3] [12M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

6 a) Write short notes about general method of dynamic programming.

[L3][CO3] [3M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

b) Build any one application of dynamic programming with an example.

[L6][CO1] [9M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

7 Discuss about Optimal binary search tree with suitable example.

[L2][CO3] [12M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

8 Explain 0/1 knapsack problem by using dynamic programming with an examples.

[L2][CO3] [12M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

9 Construct an algorithm for All pairs of shortest path and calculate shortest path

between all pairs of vertices by using dynamic programming method for the

following graph.

[L6][CO3] [12M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

 10
Analyze the minimum cost tour for given problem in travelling sales person

Concepts by using dynamic programming.

[L4][CO3] [12M]

R20 Course Code: 20CS0523

R20 Course Code: 20CS0523

R20 CourseCode:20CS0523

UNIT –IV
BACKTRACKING, BRANCH AND BOUND

1 Distinguish in detail 8-queens problem using backtracking with state space tree.

[L4][CO4] [12M]

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

2 Explain sum of subsets by using backtracking with an example.

[L5][CO4] [12M]

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

3
a) Recall the graph coloring. Explain in detail about graph coloring with an

example.

• Graph Coloring is a problem of coloring each vertex in graph in such a

way that no two adjacent vertices have same color and yet m-colors are
used.

• This problem is also called as m-coloring problem. If the degree of given
graph is d then we can color it with d+1 colors.

[L5][CO4] [9M]

R20 CourseCode:20CS0523

b) Discuss about General method of backtracking

[L3][CO4] [3M]

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

4
Discuss the Hamiltonian cycle algorithm with step by step operation with example.

[L6][CO4] [12M]

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

5 Give brief description about the general method of branch and bound.

[L2][CO4] [6M]

R20 CourseCode:20CS0523

6 Find the LC branch and bound solution for the traveling sale person problem whose

cost matrix is as follows:

[L4][CO4] [12M]

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

7

Simplify 0/1 knapsack problem and design an algorithm of LC Branch and

Bound and find the solution for the knapsack instance of n = 4,(p1, p2, p3, p4) =

(10, 10, 12, 18),(w1,w2,w3, w4) =(2, 4,6, 9)and M =15.

[L4][CO4] [12M]

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

8 Construct the LC branch and bound search. Consider knapsack instance n=4 with

Capacity M=15 such that pi={10,10,12,18}, wi={2,4,6,9} apply FIFO branch and

bound technique.

[L6][CO4] [12M]

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

R20 CourseCode:20CS0523

9 a) Explain the principles of FIFO branch and bound.

• First-In-First-Out is an approach to the branch and bound problem that

uses the queue approach to create a state-space tree. In this case, the breadth-

first search is performed, that is, the elements at a certain level are all

searched, and then the elements at the next level are searched, starting with

the first child of the first node at the previous level.

• For a given set {A, B, C, D}, the state space tree will be constructed as

follows :

• The above diagram shows that we first consider element A, then

element B, then element C and finally we’ll consider the last element

which is D. We are performing BFS while exploring the nodes.

• So, once the first level is completed. We’ll consider the first

element, then we can consider either B, C, or D. If we follow the

route then it says that we are doing elements A and D so we will not

consider elements B and C. If we select the elements A and D only,

then it says that we are selecting elements A and D and we are not

considering elements B and C.

• Now, we will expand node 3, as we have considered element B and not

considered element A, so, we have two options to explore that is elements
C and D. Let’s create nodes 9 and 10 for elements C and D respectively.

[L2][CO4] [6M]

R20 CourseCode:20CS0523

• Now, we will expand node 4 as we have only considered elements C and

not considered elements A and B, so, we have only one option to explore
which is element D. Let’s create node 11 for D.

• Till node 5, we have only considered elements D, and not selected
elements A, B, and C. So, We have no more elements to explore,
Therefore on node 5, there won’t be any expansion.

• Now, we will expand node 6 as we have considered elements A and B,
so, we have only two option to explore that is element C and D. Let’s
create node 12 and 13 for C and D respectively.

• Now, we will expand node 7 as we have considered elements A and C

and not consider element B, so, we have only one option to explore
which is element D. Let’s create node 14 for D.

R20 CourseCode:20CS0523

• Till node 8, we have considered elements A and D, and not selected

elements B and C, So, We have no more elements to explore, Therefore
on node 8, there won’t be any expansion.

• Now, we will expand node 9 as we have considered elements B and C
and not considered element A, so, we have only one option to explore
which is element D. Let’s create node 15 for D.

b) Explain the principles of LIFO branch and bound.

• The Last-In-First-Out approach for this problem uses stack in creating

the state space tree. When nodes are added to a state space tree, they are

added to a stack. After all nodes of a level have been added, we pop the

topmost element from the stack and explore it.

• For a given set {A, B, C, D}, the state space tree will be constructed as

follows :

[L2][CO4] [6M]

R20 CourseCode:20CS0523

• Now the expansion would be based on the node that appears on the top

of the stack. Since node 5 appears on the top of the stack, so we will

expand node 5. We will pop out node 5 from the stack. Since node 5 is

in the last element, i.e., D so there is no further scope for expansion.

• The next node that appears on the top of the stack is node 4. Pop-out

node 4 and expand. On expansion, element D will be considered and

node 6 will be added to the stack shown below:

• The next node is 6 which is to be expanded. Pop-out node 6 and

expand. Since node 6 is in the last element, i.e., D so there is no further

scope for expansion.

• The next node to be expanded is node 3. Since node 3 works on

element B so node 3 will be expanded to two nodes, i.e., 7 and 8

working on elements C and D respectively. Nodes 7 and 8 will be

pushed into the stack.

• The next node that appears on the top of the stack is node 8. Pop-out

node 8 and expand. Since node 8 works on element D so there is no

further scope for the expansion.

R20 CourseCode:20CS0523

• The next node that appears on the top of the stack is node 7. Pop-out

node 7 and expand. Since node 7 works on element C so node 7 will be

further expanded to node 9 which works on element D and node 9 will

be pushed into the stack.

• The next node is 6 which is to be expanded. Pop-out node 6 and

expand. Since node 6 is in the last element, i.e., D so there is no further

scope for expansion.

• The next node that appears on the top of the stack is node 9. Since node

9 works on element D, there is no further scope for expansion.

• The next node that appears on the top of the stack is node 2. Since node

2 works on the element A so it means that node 2 can be further

expanded. It can be expanded up to three nodes named 10, 11, 12

working on elements B, C, and D respectively. There new nodes will be

pushed into the stack shown as below:

• In the above method, we explored all the nodes using the stack that

follows the LIFO principle.

10 Implement any one branch and bound application with an example.
Refer 6 or 7 or 8

[L3][CO4] [12M]

R20 CourseCode:20CS0523

1 Explain the following

i. P class:

• P problems are a set of problems that can be solved in polynomial

time by deterministic algorithms.

• P is also known as PTIME or DTIME complexity class.

• P problems are a set of all decision problems which can be solved

in polynomial time using the deterministic Turing machine.

• They are simple to solve, easy to verify and take computationally

acceptable time for solving any instance of the problem. Such problems

are also known as “tractable”.

• In the worst case, searching an element from the list of size n takes

n comparisons. The number of comparisons increases linearly with

respect to the input size. So linear search is P problem.

• In practice, most of the problems are P problems. Searching an

element in the array (O(n)), inserting an element at the end of a linked

list (O(n)), sorting data using selection sort(O(n2)), finding the height of

the tree (O(log2n)), sort data using merge sort(O(nlog2n)), matrix

multiplication O(n3) are few of the examples of P problems.

• An algorithm with O(2n) complexity takes double the time if it is

tested on a problem of size (n + 1). Such problems do not belong to

class P.

• It excludes all the problems which cannot be solved in polynomial

time. The knapsack problem using the brute force approach cannot be

solved in polynomial time. Hence, it is not a P problem.

• There exist many important problems whose solution is not found

in polynomial time so far, nor it has been proved that such a solution

does not exist. TSP, Graph colouring, partition problem, knapsack etc.

are examples of such classes.

Examples of P Problems:

1. Insertion sort

2. Merge sort

3. Linear search

4. Matrix multiplication

5. Finding minimum and maximum elements from the array

ii. NP class:

• NP is a set of problems which can be solved in nondeterministic

polynomial time. NP does not mean non-polynomial, it stands for

Non-Deterministic Polynomial-time.

• The non-deterministic algorithm operates in two stages.

• Nondeterministic (guessing) stage: For input instance I, some

solution string S is generated, which can be thought of as a candidate

solution.

• Deterministic (verification) stage: I and S are given as input to the

deterministic algorithm, which returns “Yes” if S is a solution for

input instance I.

• The solution to NP problems cannot be obtained in polynomial time,

but given the solution, it can be verified in polynomial time.

• NP includes all problems of P, i.e. P ⊆ NP.

• Knapsack problem (O(2n)), Travelling salesman problem (O(n!)),

Tower of Hanoi (O(2n – 1)), Hamiltonian cycle (O(n!)) are examples

[L2][CO5] [12M]

UNIT-V

NP-HARD AND NP-COMPLETE PROBLEM

R20 CourseCode:20CS0523

of NP problems.

• NP Problems are further classified into NP-complete and NP-hard

categories.

The following shows the taxonomy of complexity classes.

• The NP-hard problems are the hardest problem. NP-complete

problems are NP-hard, but the converse is not true.

• If NP-hard problems can be solved in polynomial time, then so is

NP-complete.

Examples of NP problems

1. Knapsack problem (O(2n))

2. Travelling salesman problem (O(n!))

3. Tower of Hanoi (O(2n – 1))

4. Hamiltonian cycle (O(n!))

iii. NP complete:

• Polynomial time reduction implies that one problem is at least as

hard as another problem, within the polynomial time factor. If A

≤p B, implies A is not harder than B by some polynomial factor.

• Decision problem A is called NP-complete if it has the following two

properties :

• It belongs to class NP.

• Every other problem B in NP can be transformed to A in

polynomial time, i.e. For every B ∈ NP, B ≤p A.

• These two facts prove that NP-complete problems are the harder

problems in class NP. They are often referred to as NPC.

• If any NP-complete problem belongs to class P, then

P = NP. However, a solution to any NP-complete problem can be

verified in polynomial time, but cannot be obtained in polynomial

time.

Theorem

• Let A bea NP-complete problem. For some decision problem B ∈

NP, if B ≤p A then B is also an NP-complete problem.

• NP-complete problems are often solved using randomization

algorithms, heuristic approaches or approximation algorithms.

Some of the well-known NP-complete problems are listed here :

1. Boolean satisfiability problem.

2. Knapsack problem.

3. Hamiltonian path problem.

4. Travelling salesman problem.

5. Subset sum problem.

6. Vertex covers the problem.

7. Graph colouring problem.

https://codecrucks.com/p-and-np-problems/

R20 CourseCode:20CS0523

8. Clique problem.

iv.NP Hard:

• Formally, a decision problem p is called NP-hard, if every problem

in NP can be reduced to p in polynomial time.

• NP-hard is a superset of all problems. NPC is in NP-hard, but the

converse may not be true.

• NP-hard problems are at least as hard as the hardest problems in NP.

• If we can solve any NP-hard problem in polynomial time, we would

be able to solve all the problems in NP in polynomial time.

• NP-hard problems do not have to be in NP. Even they may not be a

decision problem.

• The subset subproblem, the travelling salesman problem is NPC and

also belongs to NP-hard. There are certain problems which belong to

NP-hard but they are not NP-complete.

• A well-known example of the NP-hard problem is the Halting

problem.

• The halting problem is stated as, “Given an algorithm and set of

inputs, will it run forever ?” The answer to this question is Yes or

No, so this is a decision problem.

• There does not exist any known algorithm which can decide the

answer for any given input in polynomial time. So halting problem is

an NP-hard problem.

• Different mathematicians have given different relationships

considering the possibilities of P = NP and P ≠ NP.

• Non-deterministic problem Subset sum problem and travelling

salesman problem are NPC and also belong to NP-hard. There are

certain problems which belong to NP-hard but they are not NP-

complete. A well-known example of an NP-hard problem is the

Halting problem.

• The halting problem is stated as, “Given the algorithm and set of

inputs, will it run forever?” The answer to this question is Yes or No,

so this is a decision problem.

• There does not exist any known algorithm which can decide the

answer for any given input in polynomial time. So halting problem is

an NP-hard problem.

• Also, the Boolean satisfiability problem, which is in NPC, can be

reduced to an instance of the halting problem in polynomial time by

transforming it to the description of a Turing machine that tries all

truth value assignments. The Turing machine halts when it finds such

an assignment, otherwise, it goes into an infinite loop.

v. Non-deterministic problem:

• Algorithm with the property that the result of every operation is

uniquely defined is termed as deterministic algorithms.

• Such algorithms agree with the way programs are executed on a

computer.

• Algorithms which contain operations whose outcomes are not

uniquely defined but are not uniquely defined but are limited to

R20 CourseCode:20CS0523

specified set of possibilities. Such algorithms are called non-

deterministic algorithms.

• The machine executing such operations is allowed to choose any one

of these outcomes subject to a termination condition to be defined

later.

• To specify non-deterministic algorithms, there are 3 new functions:

➢ Choice(s): orbitary chooses one of the elements of set S.

➢ Failure(): signals an unsuccessful completion.

➢ Succuss(): Signals as successful completion.

Example for non-deterministic algorithm:

Algorithm Search(x)

{

 // problem is to search an element x

 //output J, such that A[J]=x; or J=0 if x is not in A

 J:=choice(1,n);

 If(A[J]:=x) then

 {

 Write (J);

 Success();

 }

 Else

 {

 Write(s);

 Failure();

 }

}

2 Construct the non-deterministic algorithms with suitable example.

Non-deterministic problem:

• Algorithm with the property that the result of every operation is

uniquely defined is termed as deterministic algorithms.

• Such algorithms agree with the way programs are executed on a

computer.

• Algorithms which contain operations whose outcomes are not

uniquely defined but are not uniquely defined but are limited to

specified set of possibilities. Such algorithms are called non-

deterministic algorithms.

• The machine executing such operations is allowed to choose any one

of these outcomes subject to a termination condition to be defined

later.

• To specify non-deterministic algorithms, there are 3 new functions:

➢ Choice(s): orbitary chooses one of the elements of set S.

➢ Failure(): signals an unsuccessful completion.

➢ Succuss(): Signals as successful completion.

Example for non-deterministic algorithm:

Algorithm Search(x)

{

 // problem is to search an element x

 //output J, such that A[J]=x; or J=0 if x is not in A

 J:=choice(1,n);

 If(A[J]:=x) then

 {

[L3][CO5] [12M]

R20 CourseCode:20CS0523

 Write (J);

 Success();

 }

 Else

 {

 Write(s);

 Failure();

 }

}

Non- deterministic knapsack algorithm:

Algorithm DKP(p,w,n,m,r,x)

{

 W:=0;

 P:=0;

 For i:=1 to n do

 {

 X[i]:=choice(0,1);

 W:=W+X[i]*W[i];

 P:=P+X[i]*P[i];

 }

 If(W>m) or (P<r)

 Failure();

 Else

 Success();

}

3 Build the non-deterministic sorting algorithm and also analyze its

complexity.

▪ Non Deterministic Sorting Algorithm produces different outputs on

every execution. They work in a probabilistic way. The output of the

algorithm depends on the sequence of random numbers generated.

▪ Consider A and B are input and output arrays of size n, respectively.

The non-deterministic sorting approach selects any random number j

between 1 to n and inserts the first element of array A on location j in

array B.

▪ The process is repeated a maximum of n times. If location B[j] is

already occupied then the algorithm fails. Otherwise, the selection of

the next position continues. In this way, all elements of input array A

are placed in output array B.

▪ After putting all elements in B, the algorithm enters in verification

stage. In verification, two adjacent elements are compared in output

array B. If any pair of adjacent elements are out of order, it implies

array B is not properly sorted and the algorithm fails.

▪ In the below example (left), the size of the array is 6. We generated a

random number between 1 to 6, six times. Assume that the sequence of

generated random numbers is <2, 6, 1, 5, 3, 4>. Elements from the input

array are rearranged based on those index values.

▪ A[1] < A[2], A[2] < A[3], but A[3] > A[4], implies that the array is not

sorted and the algorithm will return fail.

▪ On the right side, the generated random index sequence is <2, 6, 1, 3, 4,

5>. Elements from the input array are rearranged. For each element A[I]

< A[I + 1], implies this array is sorted and the algorithm returns true.

▪ Thus, the success of the algorithm purely depends on generated index

sequence

[L6][CO5] [12M]

https://codecrucks.com/sorting-algorithm/

R20 CourseCode:20CS0523

Algorithm NON_DET_SORT(A, B)

// Description : Sort array A non-deterministically and store in array B

// Input : Array A and B of size n, representing input and output array

respectively.

// Output : Success / Failure

// Guessing stage

for i ← 1 to n do

 B[i] ← 0

end

for i ← 1 to n do

 j ← select(1…n)

 if B[j] ≠ 0 then

 fail()

 end

 B[j] ← A[i]

end

// Verification stage

for i ← 1 to n – 1 do

 if B[i + 1] < B[i] then

 fail()

 end

end

B[1…n]

success()

• The output of the algorithm is acceptable when all n guesses are true.

If we run this algorithm multiple times, each time we may get

different outputs.

• The running time of this algorithm is a function of a correct guess.

Hence, the non-deterministic algorithm runs in O(f(n)) time, where n

is the size of the input.

Complexity of Non-Deterministic Sorting Algorithm:

Non-deterministic Sorting Algorithm No nested loops so, complexity

= O(n) Sorting array A[1:n] of positive integers in ascending order

Algorithm Nsort(A,n) //sort n positive integers.

4 Determine the classes NP-hard and NP-complete problem with

example.

Np- Hard:

• Formally, a decision problem p is called NP-hard, if every problem

in NP can be reduced to p in polynomial time.

• NP-hard is a superset of all problems. NPC is in NP-hard, but the

[L5][CO5] [12M]

R20 CourseCode:20CS0523

converse may not be true.

• NP-hard problems are at least as hard as the hardest problems in NP.

• If we can solve any NP-hard problem in polynomial time, we would

be able to solve all the problems in NP in polynomial time.

• NP-hard problems do not have to be in NP. Even they may not be a

decision problem.

• The subset subproblem, the travelling salesman problem is NPC and

also belongs to NP-hard. There are certain problems which belong to

NP-hard but they are not NP-complete.

• A well-known example of the NP-hard problem is the Halting

problem.

• The halting problem is stated as, “Given an algorithm and set of

inputs, will it run forever ?” The answer to this question is Yes or

No, so this is a decision problem.

• There does not exist any known algorithm which can decide the

answer for any given input in polynomial time. So halting problem is

an NP-hard problem.

• Different mathematicians have given different relationships

considering the possibilities of P = NP and P ≠ NP.

• Non-deterministic problem Subset sum problem and travelling

salesman problem are NPC and also belong to NP-hard. There are

certain problems which belong to NP-hard but they are not NP-

complete. A well-known example of an NP-hard problem is the

Halting problem.

• The halting problem is stated as, “Given the algorithm and set of

inputs, will it run forever?” The answer to this question is Yes or No,

so this is a decision problem.

• There does not exist any known algorithm which can decide the

answer for any given input in polynomial time. So halting problem is

an NP-hard problem.

• Also, the Boolean satisfiability problem, which is in NPC, can be

reduced to an instance of the halting problem in polynomial time by

transforming it to the description of a Turing machine that tries all

truth value assignments. The Turing machine halts when it finds such

an assignment, otherwise, it goes into an infinite loop.

Np-Complete:

• Polynomial time reduction implies that one problem is at least as

hard as another problem, within the polynomial time factor. If A

≤p B, implies A is not harder than B by some polynomial factor.

• Decision problem A is called NP-complete if it has the following two

properties :

• It belongs to class NP.

• Every other problem B in NP can be transformed to A in

polynomial time, i.e. For every B ∈ NP, B ≤p A.

• These two facts prove that NP-complete problems are the harder

problems in class NP. They are often referred to as NPC.

R20 CourseCode:20CS0523

• If any NP-complete problem belongs to class P, then

P = NP. However, a solution to any NP-complete problem can be

verified in polynomial time, but cannot be obtained in polynomial

time.

Theorem

• Let A be an NP-complete problem. For some decision problem B ∈

NP, if B ≤p A then B is also an NP-complete problem.

• NP-complete problems are often solved using randomization

algorithms, heuristic approaches or approximation algorithms.

Some of the well-known NP-complete problems are listed here :

9. Boolean satisfiability problem.

10. Knapsack problem.

11. Hamiltonian path problem.

12. Travelling salesman problem.

13. Subset sum problem.

14. Vertex covers the problem.

15. Graph colouring problem.

16. Clique problem.

5 State and explain cook’s theorem.

• Cook’s Theorem implies that any NP problem is at most

polynomially harder than SAT. This means that if we find a way of

solving SAT in polynomial time, we will then be in a position to

solve any NP problem in polynomial time.

• This would have huge practical repercussions, since many

frequently encountered problems which are so far believed to be

intractable are NP.

• This special property of SAT is called NP-completeness.

• A decision problem is NP-complete if it has the property that any

NP problem can be converted into it in polynomial time.

• SAT was the first NP-complete problem to be recognized as such

(the theory of NP-completeness having come into existence with the

proof of Cook’s Theorem), but it is by no means the only one.

• There are now literally thousands of problems, cropping up in many

different areas of computing, which have been proved to be NP-

complete.

• In order to prove that an NP problem is NP-complete, all that is

needed is to show that SAT can be converted into it in polynomial

time.

• The reason for this is that the sequential composition of two

polynomial-time algorithms is itself a polynomial-time algorithm,

since the sum of two polynomials is itself a polynomial.

• Suppose SAT can be converted to problem D in polynomial time.

Now take any NP problem D0.

• We know we can convert it into SAT in polynomial time, and we

know we can convert SAT into D in polynomial time.

• The result of these two conversions is a polynomial-time

conversion of D0 into D. since D0 was an arbitrary NP problem, it

follows that D isNP-complete

[L2][CO5] [12M]

6 Illustrate the satisifiability problem and write the algorithm.

• A propositional (or Boolean) variable that may be assigned the

value true or false

[L2][CO5] [12M]

https://codecrucks.com/p-and-np-problems/

R20 CourseCode:20CS0523

• If v is a propositional variable, then v the negation of v, has the

value false.

• A literal is a propositional variable or the negation of a

propositional variable or a propositional constant (i.e., true or false)

or an expression consisting of a Boolean operator and it operands,

which is propositional formula.

• Propositional formula may be represented in several forms,

including functional notation(E.G. and (x,y)), operator

notation(E.g.,(x^y)) or as an expression tree in which each internal

node is a Boolean operator and each leaf is a propositional variable

or one of the constants, true or false.

• If truth values are assigned to the variables, the formula has a truth

value that is obtained by applying the rules for the operators.

• Certain regular form for propositional formulas, called conjunctive

normal form turns out to be very useful.

• A clause is a sequence of literals separated by the boolean OR

operator(V).

• A propositional formula is in Conjunctive Normal Form(CNF), if it

consists of a sequence of clauses separated by the boolean AND

operator (^).

• An Example of a propositional formula in CNF is

(pvqvs)^(p v r)^(r v s)^(p v s v q))

Where p,q,r and s are propositional variables

• A truth assignment for set propositional variables is an assignment

of one of the values true or false to each propositional variables is

assignment of one of the values true or false to each propositional

variable in the set, in other words, a boolean valued function on the

set.

• A truth assignment is said to satisfy a formula if it makes the value

of the entire formula true.

• A CNF formula is said to be satisfiable and only if at least one

literal in the clause is true.

• Basically, CNF satisfiability is the satisfiability problem for CNF

formulas.

• If a propositional statement is satisfiable then it is possible to

generate polynomial time non-deterministic algorithm.

• This algorithm can be executed by selecting one of the two possible

assignmentsof truth values of (p1,p2,p3,…..pk) and verify whether

the statement S(p1,p2,p3,…pk) is true for that assignment.

Following algorithm illustrate the aforementioned concepts:

Algorithm Eval(E,K)

{

 For i to K do

 Pi choice(false,true);

 If S(p1,p2,p3,..pk) then

 Success();

 Else

 Failure();

}

7 Explain Reduction source problem With example.

Problem reduction is an algorithm design technique that takes a complex

[L4][CO5] [12M]

R20 CourseCode:20CS0523

problem and reduces it to a simpler one. The simpler problem is then

solved and the solution of the simpler problem is then transformed to the

solution of the original problem.

Problem reduction is a powerful technique that can be used to simplify

complex problems and make them easier to solve. It can also be used to

reduce the time and space complexity of algorithms.

Example:

Let’s understand the technique with the help of the following problem:

Calculate the LCM (Least Common Multiple) of two numbers X and Y.

Approach 1:

To solve the problem one can iterate through the multiples of the bigger

element (say X) until that is also a multiple of the other element. This can

be written as follows:

• Select the bigger element (say X here).

• Iterate through the multiples of X:

• If this is also a multiple of Y, return this as the answer.

• Otherwise, continue the traversal.

Algorithm:

Algorithm LCM(X, Y):

 if Y > X:

 swap X and Y

 end if

 for i = 1 to Y:

 if X*i is divisible by Y

 return X*i

 end if

 end for

Time Complexity: O(Y) as the loop can iterate for maximum Y times

[because X*Y is always divisible by Y]

Auxiliary Space: O(1)

Approach 2 (Problem Reduction): The above method required a linear

amount of time and if the value of Y is very big it may not be a feasible

solution. This problem can be reduced to another problem which is to

“calculate GCD of X and Y” and the solution of that can be transformed

to get the answer to the given problem as shown below:

• Calculate the GCD of X and Y using Euclid’s algorithm.

• Now we know that GCD * LCM = X*Y. So the LCM can be calculated

as (X*Y/GCD).

Algorithm:

GCD (X, Y):

 if X = 0:

 return Y

 end if

 return GCD(Y%X, X)

Algorithm LCM(X, Y):

 G = GCD (X, Y)

 LCM = X * Y / G

Must Remember points about Problem Reduction:

• Reducing a problem to another one is only practical when the total time

https://www.geeksforgeeks.org/euclidean-algorithms-basic-and-extended/

R20 CourseCode:20CS0523

taken for transforming and solving the reduced problem is lower than

solving the original problem.

• If problem A is reduced to problem B, then the lower bound of B can

be higher than the lower bound of A, but it can never be lower than the

lower bound of A.

8 Explain the following:

 (a) decision problem

 (b) clique

 (c) non deterministic machine

 (d) satisfiability

(a) decision problem:

• Any problem for which the answer is either yes or no is called

decision problem.

• The algorithm for decision problem is called decision algorithm.

• Example: Max clique problem, sum of subsets problem.

Also, decision problem is one of the key concepts used to show a

problem to be NP-complete.

Example:

The knapsack problem is a decision problem which is to determine the

assigned values of Ai to be ‘0’ or ‘1’ such that 1≤i≤n, ∑ 𝑊𝑖𝐴𝑖 ≤
𝑧 where 0≤ 𝑝𝑖 ≤ 𝑛, 0≤ 𝑊𝑖 ≤ 𝑛, y is a number

therefore , the input size of knapsack decision problem, q is

(b) clique:

• A clique is a subgraph of a graph such that all the vertices in this

subgraph are connected with each other that is the subgraph is a

complete graph.

• The Maximal Clique Problem is to find the maximum sized clique

of a given graph G, that is a complete graph which is a subgraph of

G and contains the maximum number of vertices.

• This is an optimization problem. Correspondingly, the Clique

Decision Problem is to find if a clique of size k exists in the given

graph or not.
(c) non deterministic machine:

In a Non-Deterministic Turing Machine, for every state and symbol, there

are a group of actions the TM can have. So, here the transitions are not

deterministic. The computation of a non-deterministic Turing Machine is a

tree of configurations that can be reached from the start configuration.

An input is accepted if there is at least one node of the tree which is an

accept configuration, otherwise it is not accepted. If all branches of the

computational tree halt on all inputs, the non-deterministic Turing Machine

is called a Decider and if for some input, all branches are rejected, the input

is also rejected.

A non-deterministic Turing machine can be formally defined as a 6-tuple (Q,

X, ∑, δ, q0, B, F) where −

• Q is a finite set of states

• X is the tape alphabet

• ∑ is the input alphabet

[L4][CO5] [12M]

R20 CourseCode:20CS0523

• δ is a transition function;

δ : Q × X → P(Q × X × {Left_shift, Right_shift}).

• q0 is the initial state

• B is the blank symbol

• F is the set of final states

(d) satisfiability:

• The satisfiability is a boolean formula that can be constructed using the

following literals and operations. 1.

• A literal is either a variable or its negation of the variable. 2. The literals are

connected with operators ˅, ˄͢, ⇒ ,⇔ 3.

• Parenthesis The satisfiability problem is to determine whether a Boolean

formula is true for some assignment of truth values to the variables.

• In general, formulas are expressed in Conjunctive Normal Form (CNF). A

Boolean formula is in conjunctive normal form iff it is represented by (xi∨

xj ∨ xk 1) ∧ (xi ∨ x 1 ∨ xk) A Boolean formula is in 3CNF if each clause

has exactly 3 distinct literals.

• Example: The non-deterministic algorithm that terminates successfully iff a

given formula E(x1,x2,x3) is satisfiable.

9 How to make reduction for 3-sat to clique problem? and Explain

3SAT - Determine whether a boolean formula in 3CNF can be satisfied

[L3][CO5] [12M]

R20 CourseCode:20CS0523

10 a) Statement the following with examples

a) Optimization problem :

Any problem that involves the identification of an optimal value

(maximum or minimum) is called optimization problem. Example:

Knapsack problem, travelling salesperson problem. In decision

problem, the output statement is implicit and no explicit statements

are permitted. The output from a decision problem is uniquely defined

by the input parameters and algorithm specification. Many

optimization problems can be reduced by decision problems with the

property that a decision problem can be solved in polynomial time iff

the corresponding optimization problem can be solved in polynomial

time. If the decision problem cannot be solved in polynomial time

then the optimization problem cannot be solved in polynomial time

b) Decision problem:

• Any problem for which the answer is either yes or no is

called decision problem.

• The algorithm for decision problem is called decision

algorithm.

• Example: Max clique problem, sum of subsets problem.

Also, decision problem is one of the key concepts used to show a

problem to be NP-complete.

• Example:

[L4][CO5] [6M]

R20 CourseCode:20CS0523

The knapsack problem is a decision problem which is to

determine the assigned values of Ai to be ‘0’ or ‘1’ such that

1≤i≤n, ∑ WiAi ≤ z where 0≤ pi ≤ n, 0≤ Wi ≤ n, y is a

number therefore , the input size of knapsack decision problem, q

is

 b) Explain and shows the relationship between P,NP,NP Hard and

NP Complete with neat diagram

• P, NP, NP-hard, NP-Complete are the sets of all possible Let

decision problems that are solvable in polynomial time by

using deterministic algorithms, non-deterministic algorithms,

NP-Hard and NP-complete respectively.

• Then the relationship between P, NP, NP-hard, NP-Complete

can be expressed using Venn diagram as:

• Problem conversion A decision problem D1 can be converted

into a decision problem D2 if there is an algorithm which takes

as input an arbitrary instance I1 of D1 and delivers as output

an instance I2 of D2such that I2 is a positive instance of D2 if

and only if I1 is a positive instance of D1.

• If D1 can be converted into D2, and we have an algorithm

which solves D2, then we thereby have an algorithm which

solves D1.

• To solve an instance I of D1, we first use the conversion

algorithm to generate an instance I0 of D2, and then use the

algorithm for solving D2 to determine whether or not I0 is a

positive instance of D2. If it is, then we know that I is a

positive instance of D1, and if it is not, then we know that I is a

negative instance of D1.

• Either way, we have solved D1 for that instance. Moreover, in

this case, we can say that the computational complexity of D1

is at most the sum of the computational complexities of D2 and

the conversion algorithm.

• If the conversion algorithm has polynomial complexity, we say

that D1 is at most polynomials harder than D2. It means that

the amount of computational work we have to do to solve D1,

over and above whatever is required to solve D2, is polynomial

in the size of the problem instance.

[L3][CO5] [6M]

R20 CourseCode:20CS0523

• In such a case the conversion algorithm provides us with a

feasible way of solving D1, given that we know how to solve

D2.

• Given a problem X, prove it is in NP-Complete. 1. Prove X is

in NP. 2. Select problem Y that is known to be in NP-

Complete. 3.

• Define a polynomial time reduction from Y to X. 4. Prove that

given an instance of Y, Y has a solution iffX has a solution.

